Title: | Automatic Knowledge Classification |
---|---|
Description: | A tidy framework for automatic knowledge classification and visualization. Currently, the core functionality of the framework is mainly supported by modularity-based clustering (community detection) in keyword co-occurrence network, and focuses on co-word analysis of bibliometric research. However, the designed functions in 'akc' are general, and could be extended to solve other tasks in text mining as well. |
Authors: | Tian-Yuan Huang [aut, cre] |
Maintainer: | Tian-Yuan Huang <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.9.9 |
Built: | 2025-01-14 04:39:27 UTC |
Source: | https://github.com/hope-data-science/akc |
A selected sample of bibliometric data about topics on "Library science".
Period: 2019
Database:Clarivate Analytics Web of Science
bibli_data_table
bibli_data_table
A data frame with 1448 rows and 4 variables:
Unique article identifier for each article
Title of the article
Keyword list of the article
Abstract of the article
http://www.webofknowledge.com/
Create a tbl_graph
(a class provided by tidygraph) from the tidy table with document ID and keyword.
Each entry(row) should contain only one document and keyword in the tidy format.This function would
group the documents.
doc_group( dt, id = "id", keyword = "keyword", com_detect_fun = group_fast_greedy )
doc_group( dt, id = "id", keyword = "keyword", com_detect_fun = group_fast_greedy )
dt |
A data.frame containing at least two columns with document ID and keyword. |
id |
Quoted characters specifying the column name of document ID.Default uses "id". |
keyword |
Quoted characters specifying the column name of keyword.Default uses "keyword". |
com_detect_fun |
Community detection function,provided by tidygraph(wrappers around clustering
functions provided by igraph), see |
As we could classify keywords using document ID, we could also classify documents with keywords. In the output network, the nodes are documents and the edges mean the two documents share same keywords with each other.
A tbl_graph, representing the document relation network based on keyword co-occurrence.
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% doc_group(id = "id",keyword = "keyword") -> grouped_doc grouped_doc
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% doc_group(id = "id",keyword = "keyword") -> grouped_doc grouped_doc
Carry out several keyword cleaning processes automatically and return a tidy table with document ID and keywords.
keyword_clean( df, id = "id", keyword = "keyword", sep = ";", rmParentheses = TRUE, rmNumber = TRUE, lemmatize = FALSE, lemmatize_dict = NULL )
keyword_clean( df, id = "id", keyword = "keyword", sep = ";", rmParentheses = TRUE, rmNumber = TRUE, lemmatize = FALSE, lemmatize_dict = NULL )
df |
A data.frame containing at least two columns with document ID and keyword strings with separators. |
id |
Quoted characters specifying the column name of document ID.Default uses "id". |
keyword |
Quoted characters specifying the column name of keywords.Default uses "keyword". |
sep |
Separator(s) of keywords. Default uses ";". |
rmParentheses |
Remove the contents in the parentheses (including the parentheses) or not. Default uses TRUE. |
rmNumber |
Remove the pure number sequence or no. Default uses TRUE. |
lemmatize |
Lemmatize the keywords or not. Lemmatization is supported by 'lemmatize_strings' function in 'textstem' package.Default uses FALSE. |
lemmatize_dict |
A dictionary of base terms and lemmas to use for replacement.
Only used when the lemmatize parameter is |
The entire cleaning processes include:
1.Split the text with separators;
2.Reomve the contents in the parentheses (including the parentheses);
3.Remove whitespaces from start and end of string and reduces repeated whitespaces inside a string;
4.Remove all the null character string and pure number sequences;
5.Convert all letters to lower case;
6.Lemmatization.
Some of the procedures could be suppressed or activated with parameter adjustments.
Default setting did not use lemmatization, it is suggested to use keyword_merge
to
merge the keywords afterward.
A tbl with two columns, namely document ID and cleaned keywords.
library(akc) bibli_data_table bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword")
library(akc) bibli_data_table bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword")
This function should be used to plot the object exported by
keyword_group
. It could draw a robust word cloud of keywords.
keyword_cloud(tibble_graph, group_no = NULL, top = 50, max_size = 20)
keyword_cloud(tibble_graph, group_no = NULL, top = 50, max_size = 20)
tibble_graph |
A |
group_no |
If one wants to visualize a specific group, gives the group number.
Default uses |
top |
How many top keywords (by frequency) should be plot? Default uses 50. |
max_size |
Size of largest keyword.Default uses 20. |
In the output graph, the size of keywords is proportional to the keyword
frequency, keywords in different colours belong to different group. For advanced
usage of word cloud, use ggwordcloud directly with the grouped keywords
yielded by keyword_group
.
keyword_group
,
geom_text_wordcloud_area
library(dplyr) library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") -> grouped_keyword grouped_keyword %>% keyword_cloud() grouped_keyword %>% keyword_cloud(group_no = 1)
library(dplyr) library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") -> grouped_keyword grouped_keyword %>% keyword_cloud() grouped_keyword %>% keyword_cloud(group_no = 1)
When we have raw text like abstract or article but not keywords, we might prefer extracting
keywords first. The least prerequisite data to be provided are a data.frame with document id and raw text,
and a user defined dictionary should be provided. One could use make_dict
function to construct his(her)
own dictionary with a character vector containing the vocabularies. If the dictionary is not provided,
the function would return all the ngram tokens without filtering (not recommended).
keyword_extract( dt, id = "id", text, dict = NULL, stopword = NULL, n_max = 4, n_min = 1 )
keyword_extract( dt, id = "id", text, dict = NULL, stopword = NULL, n_max = 4, n_min = 1 )
dt |
A data.frame containing at least two columns with document ID and text strings for extraction. |
id |
Quoted characters specifying the column name of document ID.Default uses "id". |
text |
Quoted characters specifying the column name of raw text for extraction. |
dict |
A data.table with two columns,namely "id" and "keyword"(set as key).
This should be exported by |
stopword |
A vector containing the stop words to be used. Default uses |
n_max |
The number of words in the n-gram. This must be an integer greater than or equal to 1. Default uses 4. |
n_min |
This must be an integer greater than or equal to 1, and less than or equal to n_max. Default uses 1. |
In the procedure of keyword extraction from akc,first the raw text would be split
into independent clause (namely split by puctuations of [,;!?.]
). Then the ngrams of the
clauses would be extracted. Finally, the phrases represented by ngrams should be in the dictionary
created by the user (using make_dict
).The user could also specify the n of ngrams.
This function could take some time if the sample size is large, it is suggested to use system.time to do some test first. Nonetheless, it has been optimized by data.table codes already and has good performance for big data.
A data.frame(tibble) with two columns, namely document ID and extracted keyword.
library(akc) library(dplyr) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% pull(keyword) %>% make_dict -> my_dict tidytext::stop_words %>% pull(word) %>% unique() -> my_stopword bibli_data_table %>% keyword_extract(id = "id",text = "abstract", dict = my_dict,stopword = my_stopword)
library(akc) library(dplyr) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% pull(keyword) %>% make_dict -> my_dict tidytext::stop_words %>% pull(word) %>% unique() -> my_stopword bibli_data_table %>% keyword_extract(id = "id",text = "abstract", dict = my_dict,stopword = my_stopword)
Create a tbl_graph
(a class provided by tidygraph) from the tidy table with document ID and keyword.
Each entry(row) should contain only one keyword in the tidy format.This function would automatically computes
the frequency and classification group number of nodes representing keywords.
keyword_group( dt, id = "id", keyword = "keyword", top = 200, min_freq = 1, com_detect_fun = group_fast_greedy )
keyword_group( dt, id = "id", keyword = "keyword", top = 200, min_freq = 1, com_detect_fun = group_fast_greedy )
dt |
A data.frame containing at least two columns with document ID and keyword. |
id |
Quoted characters specifying the column name of document ID.Default uses "id". |
keyword |
Quoted characters specifying the column name of keyword.Default uses "keyword". |
top |
The number of keywords selected with the largest frequency. If there is a tie,more than top entries would be selected. |
min_freq |
Minimum occurrence of selected keywords.Default uses 1. |
com_detect_fun |
Community detection function,provided by tidygraph(wrappers around clustering
functions provided by igraph), see |
This function receives a tidy table with document ID and keyword.Only top keywords with largest frequency would be selected and the minimum occurrence of keywords could be specified. For suggestions of community detection algorithm, see the references provided below.
A tbl_graph, representing the keyword co-occurence network with frequency and group number of the keywords.
de Sousa, Fabiano Berardo, and Liang Zhao. "Evaluating and comparing the igraph community detection algorithms." 2014 Brazilian Conference on Intelligent Systems. IEEE, 2014.
Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative analysis of community detection algorithms on artificial networks. Scientific reports, 6, 30750.
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") # use 'louvain' algorithm for community detection bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword", com_detect_fun = group_louvain) # get more alternatives by searching '?tidygraph::group_graph'
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") # use 'louvain' algorithm for community detection bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword", com_detect_fun = group_louvain) # get more alternatives by searching '?tidygraph::group_graph'
Merge keywords that have common stem or lemma, and return the majority form of the word. This function recieves a tidy table (data.frame) with document ID and keyword waiting to be merged.
keyword_merge( dt, id = "id", keyword = "keyword", reduce_form = "lemma", lemmatize_dict = NULL, stem_lang = "porter" )
keyword_merge( dt, id = "id", keyword = "keyword", reduce_form = "lemma", lemmatize_dict = NULL, stem_lang = "porter" )
dt |
A data.frame containing at least two columns with document ID and keyword. |
id |
Quoted characters specifying the column name of document ID.Default uses "id". |
keyword |
Quoted characters specifying the column name of keyword.Default uses "keyword". |
reduce_form |
Merge keywords with the same stem("stem") or lemma("lemma"). See details. Default uses "lemma". Another advanced option is "partof". If a non-unigram (A) is part (subset) of another non-unigram (B), then the longer one(B) would be replaced by the shorter one(A). |
lemmatize_dict |
A dictionary of base terms and lemmas to use for replacement.
Only used when the lemmatize parameter is |
stem_lang |
The name of a recognized language.
The list of supported languages could be found at |
While keyword_clean
has provided a robust way to lemmatize the keywords, the returned token
might not be the most common way to use.This function first gets the stem or lemma of
every keyword using stem_strings
or lemmatize_strings
from textstem package,
then find the most frequent form (if more than 1,randomly select one)
for each stem or lemma. Last, every keyword
would be replaced by the most frequent keyword which share the same stem or lemma with it.
When the 'reduce_form' is set to "partof", then for non-unigrams in the same document, if one non-unigram is the subset of another, then they would be merged into the shorter one, which is considered to be more general (e.g. "time series" and "time series analysis" would be merged into "time series" if they co-occur in the same document). This could reduce the redundant information. This is only applied to multi-word phrases, because using it for one word would oversimplify the token and cause information loss (therefore, "time series" and "time" would not be merged into "time"). This is an advanced option that should be used with caution (A trade-off between information generalization and detailed information retention).
A tbl, namely a tidy table with document ID and merged keyword.
stem_strings
, lemmatize_strings
library(akc) bibli_data_table %>% keyword_clean(lemmatize = FALSE) %>% keyword_merge(reduce_form = "stem") bibli_data_table %>% keyword_clean(lemmatize = FALSE) %>% keyword_merge(reduce_form = "lemma")
library(akc) bibli_data_table %>% keyword_clean(lemmatize = FALSE) %>% keyword_merge(reduce_form = "stem") bibli_data_table %>% keyword_clean(lemmatize = FALSE) %>% keyword_merge(reduce_form = "lemma")
Providing flexible visualization of keyword_vis
. The
group size would be showed, and user could extract specific group to visualize.
keyword_network( tibble_graph, group_no = NULL, facet = TRUE, max_nodes = 10, alpha = 0.7 )
keyword_network( tibble_graph, group_no = NULL, facet = TRUE, max_nodes = 10, alpha = 0.7 )
tibble_graph |
A |
group_no |
If one wants to visualize a specific group, gives the group number.
Default uses |
facet |
Whether the figure should use facet or not. |
max_nodes |
The maximum number of nodes displayed in each group. |
alpha |
The transparency of label. Must lie between 0 and 1. Default uses 0.7. |
If the group_no
is not specified, when facet == TRUE
,
the function returns a faceted figure with limited number of nodes
(adjuseted by max_nodes
parameter). The "N=" shows the total size of the group.
When facet == FALSE
,all the nodes would be displayed in one
network.Colors are used to specify the groups, the size of nodes is proportional to the keyword frequency,
while the alpha of edges is proportional to the co-occurrence relationship between keywords.
If the group_no
is specified, returns the network visualization of the group.
If you want to display all the nodes, set max_nodes
to Inf
.
An object yielded by ggraph
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network() # use color with `scale_fill_` bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network() + ggplot2::scale_fill_viridis_d() # without facet bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network(facet = FALSE) # get Group 5 bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network(group_no = 5)
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network() # use color with `scale_fill_` bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network() + ggplot2::scale_fill_viridis_d() # without facet bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network(facet = FALSE) # get Group 5 bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_network(group_no = 5)
Display the result of network-based keyword clustering, with frequency information attached.
keyword_table(tibble_graph, top = 10)
keyword_table(tibble_graph, top = 10)
tibble_graph |
A |
top |
How many keywords should be displayed in the table for each group. Default uses 10.If there is a tie,more than top keywords would be selected. To show all the keywords, use Inf. |
A tibble with two columns, namely group and keywords with frequency attached. Different keywords are separated by semicolon(';').
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_table()
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_table()
Visualization of network-based keyword clustering, with frequency and co-occurrence information attached.
keyword_vis(tibble_graph, facet = TRUE, max_nodes = 10, alpha = 0.7)
keyword_vis(tibble_graph, facet = TRUE, max_nodes = 10, alpha = 0.7)
tibble_graph |
A |
facet |
Whether the figure should use facet or not. |
max_nodes |
The maximum number of nodes displayed in each group. |
alpha |
The transparency of label. Must lie between 0 and 1. Default uses 0.7. |
When facet == TRUE
,the function returns a faceted figure with limited number of nodes
(adjuseted by max_nodes
parameter).When facet == FALSE
,all the nodes would be displayed in one
network.Colors are used to specify the groups, the size of nodes is proportional to the keyword frequency,
while the alpha of edges is proportional to the co-occurrence relationship between keywords.
An object yielded by ggraph
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_vis() # without facet bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_vis(facet = FALSE)
library(akc) bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_vis() # without facet bibli_data_table %>% keyword_clean(id = "id",keyword = "keyword") %>% keyword_group(id = "id",keyword = "keyword") %>% keyword_vis(facet = FALSE)
Construting a dictionary using a string vector with user defined vocabulary.
make_dict(dict_vacabulary_vector)
make_dict(dict_vacabulary_vector)
dict_vacabulary_vector |
A character vector containing the user defined professional vocabulary. |
Build a user defined vocabulary for keyword extraction (keyword_extract
).
A data.table with document id and keyword,using keyword as the key.
library(akc) library(dplyr) bibli_data_table %>% keyword_clean() %>% pull(keyword) %>% make_dict() -> dict
library(akc) library(dplyr) bibli_data_table %>% keyword_clean() %>% pull(keyword) %>% make_dict() -> dict
See stop_words
from tidytext package.
stop_words
stop_words
An object of class tbl_df
(inherits from tbl
, data.frame
) with 1149 rows and 2 columns.