Title: | Fast and Memory Efficient Data Operations in Tidy Syntax |
---|---|
Description: | Tidy syntax for 'data.table', using modification by reference whenever possible. This toolkit is designed for big data analysis in high-performance desktop or laptop computers. The syntax of the package is similar or identical to 'tidyverse'. It is user friendly, memory efficient and time saving. For more information, check its ancestor package 'tidyfst'. |
Authors: | Tian-Yuan Huang [aut, cre] |
Maintainer: | Tian-Yuan Huang <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.9.20 |
Built: | 2025-01-21 04:41:03 UTC |
Source: | https://github.com/hope-data-science/tidyft |
Analogous function for arrange
in dplyr.
arrange(.data, ..., cols = NULL, order = 1L)
arrange(.data, ..., cols = NULL, order = 1L)
.data |
data.frame |
... |
Arrange by what group? Minus symbol means arrange by descending order. |
cols |
For |
order |
For |
Once arranged, the order of entries would be changed forever.
A data.table
a = as.data.table(iris) a %>% arrange(Sepal.Length) a a %>% arrange(cols = c("Sepal.Width","Petal.Length")) a
a = as.data.table(iris) a %>% arrange(Sepal.Length) a a %>% arrange(cols = c("Sepal.Width","Petal.Length")) a
This function first export the data.frame to a temporal file, and then parse it back as a fst table (class name is "fst_table").
as_fst(.data)
as_fst(.data)
.data |
A data.frame |
An object of class fst_table
iris %>% as_fst() -> iris_fst iris_fst
iris %>% as_fst() -> iris_fst iris_fst
Turns implicit missing values into explicit missing values.
Analogous function for complete
function in tidyr.
complete(.data, ..., fill = NA)
complete(.data, ..., fill = NA)
.data |
data.frame |
... |
Specification of columns to expand.The selection of columns is
supported by the flexible |
fill |
Atomic value to fill into the missing cell, default uses |
When the provided columns with addtion data are of different length, all the unique combinations would be returned. This operation should be used only on unique entries, and it will always returned the unique entries.
If you supply fill parameter, these values will also replace existing explicit missing values in the data set.
data.table
df <- data.table( group = c(1:2, 1), item_id = c(1:2, 2), item_name = c("a", "b", "b"), value1 = 1:3, value2 = 4:6 ) df %>% complete(item_id,item_name) df %>% complete(item_id,item_name,fill = 0) df %>% complete("item") df %>% complete(item_id=1:3) df %>% complete(item_id=1:3,group=1:2) df %>% complete(item_id=1:3,group=1:3,item_name=c("a","b","c"))
df <- data.table( group = c(1:2, 1), item_id = c(1:2, 2), item_name = c("a", "b", "b"), value1 = 1:3, value2 = 4:6 ) df %>% complete(item_id,item_name) df %>% complete(item_id,item_name,fill = 0) df %>% complete("item") df %>% complete(item_id=1:3) df %>% complete(item_id=1:3,group=1:2) df %>% complete(item_id=1:3,group=1:3,item_name=c("a","b","c"))
Analogous function for count
and add_count
in dplyr.
count(.data, ..., sort = FALSE, name = "n") add_count(.data, ..., name = "n")
count(.data, ..., sort = FALSE, name = "n") add_count(.data, ..., name = "n")
.data |
data.table |
... |
variables to group by. |
sort |
logical. If TRUE result will be sorted in desending order by resulting variable. |
name |
character. Name of resulting variable. Default uses "n". |
data.table
a = as.data.table(mtcars) count(a,cyl) count(a,cyl,sort = TRUE) a b = as.data.table(iris) b %>% add_count(Species,name = "N") b
a = as.data.table(mtcars) count(a,cyl) count(a,cyl,sort = TRUE) a b = as.data.table(iris) b %>% add_count(Species,name = "N") b
Returns a vector whose elements are the cumulative mean of the elements of the argument.
cummean(x)
cummean(x)
x |
a numeric or complex object, or an object that can be coerced to one of these. |
A numeric vector
cummean(1:10)
cummean(1:10)
Analogous function for distinct
in dplyr
distinct(.data, ..., .keep_all = FALSE)
distinct(.data, ..., .keep_all = FALSE)
.data |
data.table |
... |
Optional variables to use when determining uniqueness. If there are multiple rows for a given combination of inputs, only the first row will be preserved. If omitted, will use all variables. |
.keep_all |
If |
data.table
a = as.data.table(iris) b = as.data.table(mtcars) a %>% distinct(Species) b %>% distinct(cyl,vs,.keep_all = TRUE)
a = as.data.table(iris) b = as.data.table(mtcars) a %>% distinct(Species) b %>% distinct(cyl,vs,.keep_all = TRUE)
drop_na
drops entries by specified columns.
delete_na
deletes rows or columns with too many NAs.
drop_na(.data, ...) delete_na(.data, MARGIN, n)
drop_na(.data, ...) delete_na(.data, MARGIN, n)
.data |
A data.table |
... |
Colunms to be dropped or deleted. |
MARGIN |
1 or 2. 1 for deleting rows, 2 for deleting columns. |
n |
If number (proportion) of NAs is larger than or equal to "n", the columns/rows would be deleted. When smaller than 1, use as proportion. When larger or equal to 1, use as number. |
A data.table
x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x x %>% delete_na(2,0.75) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,0.5) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,0.24) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,2) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(1,0.6) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(1,2)
x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x x %>% delete_na(2,0.75) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,0.5) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,0.24) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(2,2) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(1,0.6) x = data.table(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4)) x %>% delete_na(1,2)
Quickly create dummy (binary) columns from character and factor type columns in the inputted data (and numeric columns if specified.) This function is useful for statistical analysis when you want binary columns rather than character columns.
dummy(.data, ..., longname = TRUE)
dummy(.data, ..., longname = TRUE)
.data |
data.frame |
... |
Columns you want to create dummy variables from. Very flexible, find in the examples. |
longname |
logical. Should the output column labeled with the
original column name? Default uses |
If no columns provided, will return the original data frame.
This function is inspired by fastDummies package, but provides
simple and precise usage, whereas fastDummies::dummy_cols
provides more
features for statistical usage.
data.table
iris = as.data.table(iris) iris %>% dummy(Species) iris %>% dummy(Species,longname = FALSE) mtcars = as.data.table(mtcars) mtcars %>% head() %>% dummy(vs,am) mtcars %>% head() %>% dummy("cyl|gear")
iris = as.data.table(iris) iris %>% dummy(Species) iris %>% dummy(Species,longname = FALSE) mtcars = as.data.table(mtcars) mtcars %>% head() %>% dummy(vs,am) mtcars %>% head() %>% dummy("cyl|gear")
Wrapper for read_fst
and write_fst
from fst, but use a different default. For data import, always return a data.table.
For data export, always compress the data to the smallest size.
export_fst(x, path, compress = 100, uniform_encoding = TRUE) import_fst( path, columns = NULL, from = 1, to = NULL, as.data.table = TRUE, old_format = FALSE )
export_fst(x, path, compress = 100, uniform_encoding = TRUE) import_fst( path, columns = NULL, from = 1, to = NULL, as.data.table = TRUE, old_format = FALSE )
x |
a data frame to write to disk |
path |
path to fst file |
compress |
value in the range 0 to 100, indicating the amount of compression to use. Lower values mean larger file sizes. The default compression is set to 50. |
uniform_encoding |
If 'TRUE', all character vectors will be assumed to have elements with equal encoding. The encoding (latin1, UTF8 or native) of the first non-NA element will used as encoding for the whole column. This will be a correct assumption for most use cases. If 'uniform.encoding' is set to 'FALSE', no such assumption will be made and all elements will be converted to the same encoding. The latter is a relatively expensive operation and will reduce write performance for character columns. |
columns |
Column names to read. The default is to read all columns. |
from |
Read data starting from this row number. |
to |
Read data up until this row number. The default is to read to the last row of the stored dataset. |
as.data.table |
If TRUE, the result will be returned as a |
old_format |
must be FALSE, the old fst file format is deprecated and can only be read and converted with fst package versions 0.8.0 to 0.8.10. |
'import_fst' returns a data.table with the selected columns and rows. 'export_fst' writes 'x' to a 'fst' file and invisibly returns 'x' (so you can use this function in a pipeline).
export_fst(iris,"iris_fst_test.fst") iris_dt = import_fst("iris_fst_test.fst") iris_dt unlink("iris_fst_test.fst")
export_fst(iris,"iris_fst_test.fst") iris_dt = import_fst("iris_fst_test.fst") iris_dt unlink("iris_fst_test.fst")
Fills missing values in selected columns using the next or previous entry.
fill(.data, ..., direction = "down") shift_fill(x, direction = "down")
fill(.data, ..., direction = "down") shift_fill(x, direction = "down")
.data |
A data.table |
... |
A selection of columns. |
direction |
Direction in which to fill missing values. Currently either "down" (the default), "up". |
x |
A vector. |
fill
is filling data.table's columns,
shift_fill
is filling any vectors.
A filled data.table
df <- data.table(Month = 1:12, Year = c(2000, rep(NA, 10),2001)) df df %>% fill(Year) df <- data.table(Month = 1:12, Year = c(2000, rep(NA, 10),2001)) df %>% fill(Year,direction = "up")
df <- data.table(Month = 1:12, Year = c(2000, rep(NA, 10),2001)) df df %>% fill(Year) df <- data.table(Month = 1:12, Year = c(2000, rep(NA, 10),2001)) df %>% fill(Year,direction = "up")
Analogous function for filter
in dplyr.
filter(.data, ...)
filter(.data, ...)
.data |
data.frame |
... |
List of variables or name-value pairs of summary/modifications functions. |
Currently data.table is not able to delete rows by reference,
A data.table
https://github.com/Rdatatable/data.table/issues/635
https://stackoverflow.com/questions/10790204/how-to-delete-a-row-by-reference-in-data-table
iris = as.data.table(iris) iris %>% filter(Sepal.Length > 7) iris %>% filter(Sepal.Length > 7,Sepal.Width > 3) iris %>% filter(Sepal.Length > 7 & Sepal.Width > 3) iris %>% filter(Sepal.Length == max(Sepal.Length))
iris = as.data.table(iris) iris %>% filter(Sepal.Length > 7) iris %>% filter(Sepal.Length > 7,Sepal.Width > 3) iris %>% filter(Sepal.Length > 7 & Sepal.Width > 3) iris %>% filter(Sepal.Length == max(Sepal.Length))
An API for reading fst file as data.table.
parse_fst(path) slice_fst(ft, row_no) select_fst(ft, ...) filter_fst(ft, ...) summary_fst(ft)
parse_fst(path) slice_fst(ft, row_no) select_fst(ft, ...) filter_fst(ft, ...) summary_fst(ft)
path |
path to fst file |
ft |
An object of class fst_table, returned by |
row_no |
An integer vector (Positive) |
... |
The filter conditions |
summary_fst
could provide some basic information about
the fst table.
parse_fst
returns a fst_table class.
select_fst
and filter_fst
returns a data.table.
# write the file first path = tempfile(fileext = ".fst") fst::write_fst(iris,path) # parse the file but not reading it parse_fst(path) -> ft ft class(ft) lapply(ft,class) names(ft) dim(ft) summary_fst(ft) # get the data by query ft %>% slice_fst(1:3) ft %>% slice_fst(c(1,3)) ft %>% select_fst(Sepal.Length) ft %>% select_fst(Sepal.Length,Sepal.Width) ft %>% select_fst("Sepal.Length") ft %>% select_fst(1:3) ft %>% select_fst(1,3) ft %>% select_fst("Se") # return a warning with message ft %>% select_fst("nothing") ft %>% select_fst("Se|Sp") ft %>% select_fst(cols = names(iris)[2:3]) ft %>% filter_fst(Sepal.Width > 3) ft %>% filter_fst(Sepal.Length > 6 , Species == "virginica") ft %>% filter_fst(Sepal.Length > 6 & Species == "virginica" & Sepal.Width < 3)
# write the file first path = tempfile(fileext = ".fst") fst::write_fst(iris,path) # parse the file but not reading it parse_fst(path) -> ft ft class(ft) lapply(ft,class) names(ft) dim(ft) summary_fst(ft) # get the data by query ft %>% slice_fst(1:3) ft %>% slice_fst(c(1,3)) ft %>% select_fst(Sepal.Length) ft %>% select_fst(Sepal.Length,Sepal.Width) ft %>% select_fst("Sepal.Length") ft %>% select_fst(1:3) ft %>% select_fst(1,3) ft %>% select_fst("Se") # return a warning with message ft %>% select_fst("nothing") ft %>% select_fst("Se|Sp") ft %>% select_fst(cols = names(iris)[2:3]) ft %>% filter_fst(Sepal.Width > 3) ft %>% filter_fst(Sepal.Length > 6 , Species == "virginica") ft %>% filter_fst(Sepal.Length > 6 & Species == "virginica" & Sepal.Width < 3)
Most data operations are done on groups defined by variables.
group_by
will group the data.table by selected variables (setting
them as keys), and arrange them in ascending order.
group_exe
could do computations by group, it receives an object
returned by group_by
.
group_by(.data, ...) group_exe(.data, ...) groups(x) ungroup(x)
group_by(.data, ...) group_exe(.data, ...) groups(x) ungroup(x)
.data |
A data.table |
... |
For |
x |
A data.table |
For mutate
and summarise
, it is recommended to
use the innate "by" parameter, which is faster. Once the data.table is
grouped, the order is changed forever.
groups()
could return a character vector of specified groups.
ungroup()
would delete the keys in data.table.
A data.table with keys
a = as.data.table(iris) a a %>% group_by(Species) %>% group_exe( head(3) ) groups(a) ungroup(a) groups(a)
a = as.data.table(iris) a a %>% group_by(Species) %>% group_exe( head(3) ) groups(a) ungroup(a) groups(a)
The mutating joins add columns from 'y' to 'x', matching rows based on the keys:
* 'inner_join()': includes all rows in 'x' and 'y'. * 'left_join()': includes all rows in 'x'. * 'right_join()': includes all rows in 'y'. * 'full_join()': includes all rows in 'x' or 'y'.
Filtering joins filter rows from 'x' based on the presence or absence of matches in 'y':
* 'semi_join()' return all rows from 'x' with a match in 'y'. * 'anti_join()' return all rows from 'x' without a match in 'y'.
inner_join(x, y, by = NULL, on = NULL) left_join(x, y, by = NULL, on = NULL) right_join(x, y, by = NULL, on = NULL) full_join(x, y, by = NULL, on = NULL) anti_join(x, y, by = NULL, on = NULL) semi_join(x, y, by = NULL, on = NULL)
inner_join(x, y, by = NULL, on = NULL) left_join(x, y, by = NULL, on = NULL) right_join(x, y, by = NULL, on = NULL) full_join(x, y, by = NULL, on = NULL) anti_join(x, y, by = NULL, on = NULL) semi_join(x, y, by = NULL, on = NULL)
x |
A data.table |
y |
A data.table |
by |
(Optional) A character vector of variables to join by. If 'NULL', the default, '*_join()' will perform a natural join, using all variables in common across 'x' and 'y'. A message lists the variables so that you can check they're correct; suppress the message by supplying 'by' explicitly. To join by different variables on 'x' and 'y', use a named vector. For example, 'by = c("a" = "b")' will match 'x$a' to 'y$b'. To join by multiple variables, use a vector with length > 1. For example, 'by = c("a", "b")' will match 'x$a' to 'y$a' and 'x$b' to 'y$b'. Use a named vector to match different variables in 'x' and 'y'. For example, 'by = c("a" = "b", "c" = "d")' will match 'x$a' to 'y$b' and 'x$c' to 'y$d'. |
on |
(Optional)
Indicate which columns in x should be joined with which columns in y.
Examples included:
1. |
A data.table
workers = fread(" name company Nick Acme John Ajax Daniela Ajax ") positions = fread(" name position John designer Daniela engineer Cathie manager ") workers %>% inner_join(positions) workers %>% left_join(positions) workers %>% right_join(positions) workers %>% full_join(positions) # filtering joins workers %>% anti_join(positions) workers %>% semi_join(positions) # To suppress the message, supply 'by' argument workers %>% left_join(positions, by = "name") # Use a named 'by' if the join variables have different names positions2 = setNames(positions, c("worker", "position")) # rename first column in 'positions' workers %>% inner_join(positions2, by = c("name" = "worker")) # the syntax of 'on' could be a bit different workers %>% inner_join(positions2,on = "name==worker")
workers = fread(" name company Nick Acme John Ajax Daniela Ajax ") positions = fread(" name position John designer Daniela engineer Cathie manager ") workers %>% inner_join(positions) workers %>% left_join(positions) workers %>% right_join(positions) workers %>% full_join(positions) # filtering joins workers %>% anti_join(positions) workers %>% semi_join(positions) # To suppress the message, supply 'by' argument workers %>% left_join(positions, by = "name") # Use a named 'by' if the join variables have different names positions2 = setNames(positions, c("worker", "position")) # rename first column in 'positions' workers %>% inner_join(positions2, by = c("name" = "worker")) # the syntax of 'on' could be a bit different workers %>% inner_join(positions2,on = "name==worker")
Analogous function for lead
and lag
in dplyr by
wrapping data.table's shift
.
lead(x, n = 1L, fill = NA) lag(x, n = 1L, fill = NA)
lead(x, n = 1L, fill = NA) lag(x, n = 1L, fill = NA)
x |
A vector |
n |
a positive integer of length 1, giving the number of positions to lead or lag by. Default uses 1 |
fill |
Value to use for padding when the window goes beyond the input length.
Default uses |
A vector
lead(1:5) lag(1:5) lead(1:5,2) lead(1:5,n = 2,fill = 0)
lead(1:5) lag(1:5) lead(1:5,2) lead(1:5,n = 2,fill = 0)
Fast table pivoting from long to wide and from wide to long.
These functions are supported by dcast.data.table
and melt.data.table
from data.table.
longer(.data, ..., name = "name", value = "value", na.rm = FALSE) wider(.data, ..., name, value = NULL, fun = NULL, fill = NA)
longer(.data, ..., name = "name", value = "value", na.rm = FALSE) wider(.data, ..., name, value = NULL, fun = NULL, fill = NA)
.data |
A data.table |
... |
Columns for unchanged group. Flexible, see examples. |
name |
Name for the measured variable names column. |
value |
Name for the data values column(s). |
na.rm |
If |
fun |
Should the data be aggregated before casting?
Defaults to |
fill |
Value with which to fill missing cells. Default uses |
A data.table
stocks <- data.table( time = as.Date('2009-01-01') + 0:9, X = rnorm(10, 0, 1), Y = rnorm(10, 0, 2), Z = rnorm(10, 0, 4) ) stocks %>% longer(time) stocks %>% longer(-(2:4)) # same stocks %>% longer(-"X|Y|Z") # same long_stocks = longer(stocks,"ti") # same as above except for assignment long_stocks %>% wider(time,name = "name",value = "value") # the unchanged group could be missed if all the rest will be used long_stocks %>% wider(name = "name",value = "value")
stocks <- data.table( time = as.Date('2009-01-01') + 0:9, X = rnorm(10, 0, 1), Y = rnorm(10, 0, 2), Z = rnorm(10, 0, 4) ) stocks %>% longer(time) stocks %>% longer(-(2:4)) # same stocks %>% longer(-"X|Y|Z") # same long_stocks = longer(stocks,"ti") # same as above except for assignment long_stocks %>% wider(time,name = "name",value = "value") # the unchanged group could be missed if all the rest will be used long_stocks %>% wider(name = "name",value = "value")
Convenient fucntions to implement conversion between tidy table and named matrix.
mat_df(m) df_mat(df, row, col, value)
mat_df(m) df_mat(df, row, col, value)
m |
A matrix |
df |
A data.frame with at least 3 columns, one for row name, one for column name, and one for values. The names for column and row should be unique. |
row |
Unquoted expression of column name for row |
col |
Unquoted expression of column name for column |
value |
Unquoted expression of column name for values |
For mat_df
, a data.frame.
For df_mat
, a named matrix.
mm = matrix(c(1:8,NA),ncol = 3,dimnames = list(letters[1:3],LETTERS[1:3])) mm tdf = mat_df(mm) tdf mat = df_mat(tdf,row,col,value) setequal(mm,mat) tdf %>% setNames(c("A","B","C")) %>% df_mat(A,B,C)
mm = matrix(c(1:8,NA),ncol = 3,dimnames = list(letters[1:3],LETTERS[1:3])) mm tdf = mat_df(mm) tdf mat = df_mat(tdf,row,col,value) setequal(mm,mat) tdf %>% setNames(c("A","B","C")) %>% df_mat(A,B,C)
mutate()
adds new variables and preserves existing ones;
transmute()
adds new variables and drops existing ones.
Both functions preserve the number of rows of the input.
New variables overwrite existing variables of the same name.
mutate_when
integrates mutate
and case_when
in dplyr and make a new tidy verb for data.table. mutate_vars
is
a super function to do updates in specific columns according to conditions.
If you mutate a data.table, it is forever changed.
No copies made, which is efficient, but should be used with caution.
If you still want the keep the original data.table, use
copy
first.
mutate(.data, ..., by) transmute(.data, ..., by) mutate_when(.data, when, ..., by) mutate_vars(.data, .cols = NULL, .func, ..., by)
mutate(.data, ..., by) transmute(.data, ..., by) mutate_when(.data, when, ..., by) mutate_vars(.data, .cols = NULL, .func, ..., by)
.data |
A data.table |
... |
Name-value pairs of expressions |
by |
(Optional) Mutate by what group? |
when |
An object which can be coerced to logical mode |
.cols |
Any types that can be accepted by |
.func |
Function to be run within each column, should return a value or vectors with same length. |
A data.table
# Newly created variables are available immediately a = as.data.table(mtcars) copy(a) %>% mutate(cyl2 = cyl * 2) a # change forever a %>% mutate(cyl2 = cyl * 2) a # You can also use mutate() to remove variables and # modify existing variables a %>% mutate( mpg = NULL, disp = disp * 0.0163871 # convert to litres ) a %>% transmute(cyl,one = 1) a iris[3:8,] %>% as.data.table() %>% mutate_when(Petal.Width == .2, one = 1,Sepal.Length=2) iris[3:8,] %>% as.data.table() %>% mutate_vars("Pe",scale)
# Newly created variables are available immediately a = as.data.table(mtcars) copy(a) %>% mutate(cyl2 = cyl * 2) a # change forever a %>% mutate(cyl2 = cyl * 2) a # You can also use mutate() to remove variables and # modify existing variables a %>% mutate( mpg = NULL, disp = disp * 0.0163871 # convert to litres ) a %>% transmute(cyl,one = 1) a iris[3:8,] %>% as.data.table() %>% mutate_when(Petal.Width == .2, one = 1,Sepal.Length=2) iris[3:8,] %>% as.data.table() %>% mutate_vars("Pe",scale)
Analogous function for nest
and unnest
in tidyr.
unnest
will automatically remove other list-columns except for the
target list-columns (which would be unnested later). Also, squeeze
is
designed to merge multiple columns into list column.
nest(.data, ..., mcols = NULL, .name = "ndt") unnest(.data, ...) squeeze(.data, ..., .name = "ndt") chop(.data, ...) unchop(.data, ...)
nest(.data, ..., mcols = NULL, .name = "ndt") unnest(.data, ...) squeeze(.data, ..., .name = "ndt") chop(.data, ...) unchop(.data, ...)
.data |
data.table, nested or unnested |
... |
The variables for nest group(for |
mcols |
Name-variable pairs in the list, form like |
.name |
Character. The nested column name. Defaults to "ndt".
|
In the nest
, the data would be nested to a column named 'ndt',
which is short for nested data.table.
The squeeze
would not remove the originial columns.
The unchop
is the reverse operation of chop
.
These functions are experiencing the experimental stage, especially
the unnest
. If they don't work on some circumtances, try tidyr
package.
data.table, nested or unnested
https://www.r-bloggers.com/much-faster-unnesting-with-data-table/
https://stackoverflow.com/questions/25430986/create-nested-data-tables-by-collapsing-rows-into-new-data-tables
mtcars = as.data.table(mtcars) iris = as.data.table(iris) # examples for nest # nest by which columns? mtcars %>% nest(cyl) mtcars %>% nest("cyl") mtcars %>% nest(cyl,vs) mtcars %>% nest(vs:am) mtcars %>% nest("cyl|vs") mtcars %>% nest(c("cyl","vs")) # nest two columns directly iris %>% nest(mcols = list(petal="^Pe",sepal="^Se")) # nest more flexibly iris %>% nest(mcols = list(ndt1 = 1:3, ndt2 = "Pe", ndt3 = Sepal.Length:Sepal.Width)) # examples for unnest # unnest which column? mtcars %>% nest("cyl|vs") %>% unnest(ndt) mtcars %>% nest("cyl|vs") %>% unnest("ndt") df <- data.table( a = list(c("a", "b"), "c"), b = list(c(TRUE,TRUE),FALSE), c = list(3,c(1,2)), d = c(11, 22) ) df df %>% unnest(a) df %>% unnest(2) df %>% unnest("c") df %>% unnest(cols = names(df)[3]) # You can unnest multiple columns simultaneously df %>% unnest(1:3) df %>% unnest(a,b,c) df %>% unnest("a|b|c") # examples for squeeze # nest which columns? iris %>% squeeze(1:2) iris %>% squeeze("Se") iris %>% squeeze(Sepal.Length:Petal.Width) # examples for chop df <- data.table(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1) df %>% chop(y,z) df %>% chop(y,z) %>% unchop(y,z)
mtcars = as.data.table(mtcars) iris = as.data.table(iris) # examples for nest # nest by which columns? mtcars %>% nest(cyl) mtcars %>% nest("cyl") mtcars %>% nest(cyl,vs) mtcars %>% nest(vs:am) mtcars %>% nest("cyl|vs") mtcars %>% nest(c("cyl","vs")) # nest two columns directly iris %>% nest(mcols = list(petal="^Pe",sepal="^Se")) # nest more flexibly iris %>% nest(mcols = list(ndt1 = 1:3, ndt2 = "Pe", ndt3 = Sepal.Length:Sepal.Width)) # examples for unnest # unnest which column? mtcars %>% nest("cyl|vs") %>% unnest(ndt) mtcars %>% nest("cyl|vs") %>% unnest("ndt") df <- data.table( a = list(c("a", "b"), "c"), b = list(c(TRUE,TRUE),FALSE), c = list(3,c(1,2)), d = c(11, 22) ) df df %>% unnest(a) df %>% unnest(2) df %>% unnest("c") df %>% unnest(cols = names(df)[3]) # You can unnest multiple columns simultaneously df %>% unnest(1:3) df %>% unnest(a,b,c) df %>% unnest("a|b|c") # examples for squeeze # nest which columns? iris %>% squeeze(1:2) iris %>% squeeze("Se") iris %>% squeeze(Sepal.Length:Petal.Width) # examples for chop df <- data.table(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1) df %>% chop(y,z) df %>% chop(y,z) %>% unchop(y,z)
Get the value from a vector with its position.
nth(v, n = 1)
nth(v, n = 1)
v |
A vector |
n |
A single integer specifying the position. Default uses |
A single value.
x = 1:10 nth(x, 1) nth(x, 5) nth(x, -2)
x = 1:10 nth(x, 1) nth(x, 5) nth(x, -2)
Provides an estimate of the memory that is being used to store an R object. A wrapper of 'object.size', but use a nicer printing unit.
object_size(object)
object_size(object)
object |
an R object. |
An object of class "object_size"
iris %>% object_size()
iris %>% object_size()
Analogous function for pull
in dplyr
pull(.data, col)
pull(.data, col)
.data |
data.frame |
col |
A name of column or index (should be positive). |
A vector
mtcars %>% pull(2) mtcars %>% pull(cyl) mtcars %>% pull("cyl")
mtcars %>% pull(2) mtcars %>% pull(cyl) mtcars %>% pull("cyl")
A wrapper of fread
in data.table.
Highlighting the encoding.
read_csv(path, utf8 = FALSE, ...)
read_csv(path, utf8 = FALSE, ...)
path |
File name in working directory, path to file. |
utf8 |
Should "UTF-8" used as the encoding? (Defaults to |
... |
Other parameters passed to |
A data.table
Use 'relocate()' to change column positions, using the same syntax as 'select()'. Check similar function as 'relocate()' in dplyr.
relocate(.data, ..., how = "first", where = NULL)
relocate(.data, ..., how = "first", where = NULL)
.data |
A data.table |
... |
Columns to move |
how |
The mode of movement, including "first","last","after","before". Default uses "first". |
where |
Destination of columns selected by |
Once you relocate the columns, the order changes forever.
A data.table with rearranged columns.
df <- data.table(a = 1, b = 1, c = 1, d = "a", e = "a", f = "a") df df %>% relocate(f) df %>% relocate(a,how = "last") df %>% relocate(is.character) df %>% relocate(is.numeric, how = "last") df %>% relocate("[aeiou]") df %>% relocate(a, how = "after",where = f) df %>% relocate(f, how = "before",where = a) df %>% relocate(f, how = "before",where = c) df %>% relocate(f, how = "after",where = c) df2 <- data.table(a = 1, b = "a", c = 1, d = "a") df2 %>% relocate(is.numeric, how = "after", where = is.character) df2 %>% relocate(is.numeric, how="before", where = is.character)
df <- data.table(a = 1, b = 1, c = 1, d = "a", e = "a", f = "a") df df %>% relocate(f) df %>% relocate(a,how = "last") df %>% relocate(is.character) df %>% relocate(is.numeric, how = "last") df %>% relocate("[aeiou]") df %>% relocate(a, how = "after",where = f) df %>% relocate(f, how = "before",where = a) df %>% relocate(f, how = "before",where = c) df %>% relocate(f, how = "after",where = c) df2 <- data.table(a = 1, b = "a", c = 1, d = "a") df2 %>% relocate(is.numeric, how = "after", where = is.character) df2 %>% relocate(is.numeric, how="before", where = is.character)
replace_vars
could replace any value(s) or values
that match specific patterns to another specific value in a data.table.
replace_vars(.data, ..., from = is.na, to)
replace_vars(.data, ..., from = is.na, to)
.data |
A data.table |
... |
Colunms to be replaced. If not specified, use all columns. |
from |
A value, a vector of values or a function returns a logical value.
Defaults to |
to |
A value. |
A data.table.
iris %>% as.data.table() %>% mutate(Species = as.character(Species))-> new_iris new_iris %>% replace_vars(Species, from = "setosa",to = "SS") new_iris %>% replace_vars(Species,from = c("setosa","virginica"),to = "sv") new_iris %>% replace_vars(Petal.Width, from = .2,to = 2) new_iris %>% replace_vars(from = .2,to = NA) new_iris %>% replace_vars(is.numeric, from = function(x) x > 3, to = 9999 )
iris %>% as.data.table() %>% mutate(Species = as.character(Species))-> new_iris new_iris %>% replace_vars(Species, from = "setosa",to = "SS") new_iris %>% replace_vars(Species,from = c("setosa","virginica"),to = "sv") new_iris %>% replace_vars(Petal.Width, from = .2,to = 2) new_iris %>% replace_vars(from = .2,to = NA) new_iris %>% replace_vars(is.numeric, from = function(x) x > 3, to = 9999 )
Compute on a data frame a row-at-a-time. This is most useful when a vectorised function doesn't exist. Only mutate and summarise are supported so far.
rowwise_mutate(.data, ...) rowwise_summarise(.data, ...)
rowwise_mutate(.data, ...) rowwise_summarise(.data, ...)
.data |
A data.table |
... |
Name-value pairs of expressions |
A data.table
# without rowwise df <- data.table(x = 1:2, y = 3:4, z = 4:5) df %>% mutate(m = mean(c(x, y, z))) # with rowwise df <- data.table(x = 1:2, y = 3:4, z = 4:5) df %>% rowwise_mutate(m = mean(c(x, y, z))) # # rowwise is also useful when doing simulations params = fread(" sim n mean sd 1 1 1 1 2 2 2 4 3 3 -1 2") params %>% rowwise_summarise(sim,z = rnorm(n,mean,sd))
# without rowwise df <- data.table(x = 1:2, y = 3:4, z = 4:5) df %>% mutate(m = mean(c(x, y, z))) # with rowwise df <- data.table(x = 1:2, y = 3:4, z = 4:5) df %>% rowwise_mutate(m = mean(c(x, y, z))) # # rowwise is also useful when doing simulations params = fread(" sim n mean sd 1 1 1 1 2 2 2 4 3 3 -1 2") params %>% rowwise_summarise(sim,z = rnorm(n,mean,sd))
Choose or rename variables from a data.table.
select()
keeps only the variables you mention;
rename()
keeps all variables.
select(.data, ...) select_vars(.data, ..., rm.dup = TRUE) select_dt(.data, ..., cols = NULL, negate = FALSE) select_mix(.data, ..., rm.dup = TRUE) rename(.data, ...)
select(.data, ...) select_vars(.data, ..., rm.dup = TRUE) select_dt(.data, ..., cols = NULL, negate = FALSE) select_mix(.data, ..., rm.dup = TRUE) rename(.data, ...)
.data |
A data.table |
... |
One or more unquoted expressions separated by commas.
Very flexible, same as |
rm.dup |
Should duplicated columns be removed? Defaults to |
cols |
(Optional)A numeric or character vector. |
negate |
Applicable when regular expression and "cols" is used.
If |
No copy is made. Once you select or rename a data.table,
they would be changed forever. select_vars
could select across
different data types, names and index. See examples.
select_dt
and select_mix
is the safe mode of
select
and select_vars
, they keey the original copy but
are not memory-efficient when dealing with large data sets.
A data.table
a = as.data.table(iris) a %>% select(1:3) a a = as.data.table(iris) a %>% select_vars(is.factor,"Se") a a = as.data.table(iris) a %>% select("Se") %>% rename(sl = Sepal.Length, sw = Sepal.Width) a DT = data.table(a=1:2,b=3:4,c=5:6) DT DT %>% rename(B=b)
a = as.data.table(iris) a %>% select(1:3) a a = as.data.table(iris) a %>% select_vars(is.factor,"Se") a a = as.data.table(iris) a %>% select("Se") %>% rename(sl = Sepal.Length, sw = Sepal.Width) a DT = data.table(a=1:2,b=3:4,c=5:6) DT DT %>% rename(B=b)
Given either regular expression,
separate()
turns a single character column into two columns.
Analogous to tidyr::separate
, but only split into two columns only.
separate(.data, separated_colname, into, sep = "[^[:alnum:]]+", remove = TRUE)
separate(.data, separated_colname, into, sep = "[^[:alnum:]]+", remove = TRUE)
.data |
A data frame. |
separated_colname |
Column name, string only. |
into |
Character vector of length 2. |
sep |
Separator between columns. |
remove |
If |
A data.table
df <- data.table(x = c(NA, "a.b", "a.d", "b.c")) df %>% separate(x, c("A", "B")) # equals to df <- data.table(x = c(NA, "a.b", "a.d", "b.c")) df %>% separate("x", c("A", "B"))
df <- data.table(x = c(NA, "a.b", "a.d", "b.c")) df %>% separate(x, c("A", "B")) # equals to df <- data.table(x = c(NA, "a.b", "a.d", "b.c")) df %>% separate("x", c("A", "B"))
'slice()' lets you index rows by their (integer) locations. It allows you to select, remove, and duplicate rows. It is accompanied by a number of helpers for common use cases:
* 'slice_head()' and 'slice_tail()' select the first or last rows. * 'slice_sample()' randomly selects rows. * 'slice_min()' and 'slice_max()' select rows with highest or lowest values of a variable.
slice(.data, ...) slice_head(.data, n) slice_tail(.data, n) slice_max(.data, order_by, n, with_ties = TRUE) slice_min(.data, order_by, n, with_ties = TRUE) slice_sample(.data, n, replace = FALSE)
slice(.data, ...) slice_head(.data, n) slice_tail(.data, n) slice_max(.data, order_by, n, with_ties = TRUE) slice_min(.data, order_by, n, with_ties = TRUE) slice_sample(.data, n, replace = FALSE)
.data |
A data.table |
... |
Provide either positive values to keep, or negative values to drop. The values provided must be either all positive or all negative. |
n |
When larger than or equal to 1, the number of rows. When between 0 and 1, the proportion of rows to select. |
order_by |
Variable or function of variables to order by. |
with_ties |
Should ties be kept together? The default, 'TRUE', may return more rows than you request. Use 'FALSE' to ignore ties, and return the first 'n' rows. |
replace |
Should sampling be performed with ('TRUE') or without ('FALSE', the default) replacement. |
A data.table
a = as.data.table(iris) slice(a,1,2) slice(a,2:3) slice_head(a,5) slice_head(a,0.1) slice_tail(a,5) slice_tail(a,0.1) slice_max(a,Sepal.Length,10) slice_max(a,Sepal.Length,10,with_ties = FALSE) slice_min(a,Sepal.Length,10) slice_min(a,Sepal.Length,10,with_ties = FALSE) slice_sample(a,10) slice_sample(a,0.1)
a = as.data.table(iris) slice(a,1,2) slice(a,2:3) slice_head(a,5) slice_head(a,0.1) slice_tail(a,5) slice_tail(a,0.1) slice_max(a,Sepal.Length,10) slice_max(a,Sepal.Length,10,with_ties = FALSE) slice_min(a,Sepal.Length,10) slice_min(a,Sepal.Length,10,with_ties = FALSE) slice_sample(a,10) slice_sample(a,0.1)
Create one or more scalar variables summarizing the variables of an existing data.table.
summarise(.data, ..., by = NULL) summarise_when(.data, when, ..., by = NULL) summarise_vars(.data, .cols = NULL, .func, ..., by)
summarise(.data, ..., by = NULL) summarise_when(.data, when, ..., by = NULL) summarise_vars(.data, .cols = NULL, .func, ..., by)
.data |
A data.table |
... |
List of variables or name-value pairs of summary/modifications
functions for |
by |
Unquoted name of grouping variable of list of unquoted names of grouping variables. For details see data.table |
when |
An object which can be coerced to logical mode |
.cols |
Columns to be summarised. |
.func |
Function to be run within each column, should return a value or vectors with same length. |
A data.table
a = as.data.table(iris) a %>% summarise(sum = sum(Sepal.Length),avg = mean(Sepal.Length)) a %>% summarise_when(Sepal.Length > 5, avg = mean(Sepal.Length), by = Species) a %>% summarise_vars(is.numeric, min, by = Species)
a = as.data.table(iris) a %>% summarise(sum = sum(Sepal.Length),avg = mean(Sepal.Length)) a %>% summarise_when(Sepal.Length > 5, avg = mean(Sepal.Length), by = Species) a %>% summarise_vars(is.numeric, min, by = Species)
Convenient printing of time elapsed. A wrapper of
data.table::timetaken
, but showing the results more directly.
sys_time_print(expr)
sys_time_print(expr)
expr |
Valid R expression to be timed. |
A character vector of the form HH:MM:SS, or SS.MMMsec if under 60 seconds. See examples.
sys_time_print(Sys.sleep(1)) a = as.data.table(iris) sys_time_print({ res = a %>% mutate(one = 1) }) res
sys_time_print(Sys.sleep(1)) a = as.data.table(iris) sys_time_print({ res = a %>% mutate(one = 1) }) res
Performs the opposite operation to 'dplyr::count()', duplicating rows according to a weighting variable (or expression). Analogous to 'tidyr::uncount'.
uncount(.data, wt, .remove = TRUE)
uncount(.data, wt, .remove = TRUE)
.data |
A data.frame |
wt |
A vector of weights. |
.remove |
Should the column for |
A data.table
df <- data.table(x = c("a", "b"), n = c(1, 2)) uncount(df, n) uncount(df,n,FALSE)
df <- data.table(x = c("a", "b"), n = c(1, 2)) uncount(df, n) uncount(df,n,FALSE)
Convenience function to paste together multiple columns into one.
Analogous to tidyr::unite
.
unite(.data, united_colname, ..., sep = "_", remove = FALSE, na2char = FALSE)
unite(.data, united_colname, ..., sep = "_", remove = FALSE, na2char = FALSE)
.data |
A data frame. |
united_colname |
The name of the new column, string only. |
... |
A selection of columns. If want to select all columns, pass "" to the parameter. See example. |
sep |
Separator to use between values. |
remove |
If |
na2char |
If |
A data.table
df <- CJ(x = c("a", NA), y = c("b", NA)) df # Treat missing value as NA, default df %>% unite("z", x:y, remove = FALSE) # Treat missing value as character "NA" df %>% unite("z", x:y, na2char = TRUE, remove = FALSE) # the unite has memory, "z" would not be removed in new operations # here we remove the original columns ("x" and "y") df %>% unite("xy", x:y,remove = TRUE) # Select all columns iris %>% as.data.table %>% unite("merged_name",".")
df <- CJ(x = c("a", NA), y = c("b", NA)) df # Treat missing value as NA, default df %>% unite("z", x:y, remove = FALSE) # Treat missing value as character "NA" df %>% unite("z", x:y, na2char = TRUE, remove = FALSE) # the unite has memory, "z" would not be removed in new operations # here we remove the original columns ("x" and "y") df %>% unite("xy", x:y,remove = TRUE) # Select all columns iris %>% as.data.table %>% unite("merged_name",".")
fread
from data.table could not recognize the encoding
and return the correct form, this could be unconvenient for text mining tasks. The
utf8-encoding
could use "UTF-8" as the encoding to override the current
encoding of characters in a data frame.
utf8_encoding(.data, .cols)
utf8_encoding(.data, .cols)
.data |
A data.frame. |
.cols |
The columns you want to convert, usually a character column. |
A data.table with characters in UTF-8 encoding
iris %>% as.data.table() %>% utf8_encoding(Species) # could also use `is.factor`
iris %>% as.data.table() %>% utf8_encoding(Species) # could also use `is.factor`