Package: akc 0.9.9
Tian-Yuan Huang
akc: Automatic Knowledge Classification
A tidy framework for automatic knowledge classification and visualization. Currently, the core functionality of the framework is mainly supported by modularity-based clustering (community detection) in keyword co-occurrence network, and focuses on co-word analysis of bibliometric research. However, the designed functions in 'akc' are general, and could be extended to solve other tasks in text mining as well.
Authors:
akc_0.9.9.tar.gz
akc_0.9.9.zip(r-4.5)akc_0.9.9.zip(r-4.4)akc_0.9.9.zip(r-4.3)
akc_0.9.9.tgz(r-4.4-any)akc_0.9.9.tgz(r-4.3-any)
akc_0.9.9.tar.gz(r-4.5-noble)akc_0.9.9.tar.gz(r-4.4-noble)
akc_0.9.9.tgz(r-4.4-emscripten)akc_0.9.9.tgz(r-4.3-emscripten)
akc.pdf |akc.html✨
akc/json (API)
# Install 'akc' in R: |
install.packages('akc', repos = c('https://hope-data-science.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hope-data-science/akc/issues
- bibli_data_table - A selected dataset of bibliometric data on the topic of "Library science"
Last updated 2 years agofrom:459d8fc695. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | NOTE | Nov 15 2024 |
R-4.5-linux | NOTE | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:%>%doc_groupgroup_biconnected_componentgroup_componentsgroup_edge_betweennessgroup_fast_greedygroup_infomapgroup_label_propgroup_leading_eigengroup_louvaingroup_optimalgroup_spinglassgroup_walktrapkeyword_cleankeyword_cloudkeyword_extractkeyword_groupkeyword_mergekeyword_networkkeyword_tablekeyword_vismake_dict
Dependencies:cachemclicolorspacecommonmarkcpp11curldata.tabledigestdplyrdttenglishfansifarverfastmapfastmatchfstfstcoregenericsggforceggplot2ggraphggrepelggwordcloudgluegraphlayoutsgridExtragridtextgtablehunspelligraphisobandISOcodesjaneaustenrjpegjsonlitekoRpuskoRpus.lang.enlabelinglatticelexiconlifecyclemagrittrmarkdownMASSMatrixmemoisemgcvmgsubmunsellnlmeNLPpillarpkgconfigpngpolyclippurrrqdapRegexquantedaR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalesslamSnowballCstopwordsstringistringrsyllysylly.ensystemfontssyuzhettextcleantextshapetextstemtibbletidyfsttidygraphtidyrtidyselecttidytexttokenizerstweenrutf8vctrsviridisviridisLitewithrxfunxml2yamlzoo
Automatic knowledge classification based on keyword co-occurrrence network
Rendered fromakc_vignette.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2019-12-17
Started: 2019-12-07
Tutorial for knowledge classification from raw text
Rendered fromtutorial_raw_text.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2020-12-05
Started: 2020-01-30
Readme and manuals
Help Manual
Help page | Topics |
---|---|
A selected dataset of bibliometric data on the topic of "Library science" | bibli_data_table |
Construct network of documents based on keyword co-occurrence | doc_group |
Automatic keyword cleaning and transfer to tidy format | keyword_clean |
Draw word cloud for grouped keywords | keyword_cloud |
Extract keywords from raw text | keyword_extract |
Construct network from a tidy table and divide them into groups | keyword_group |
Merge keywords that supposed to have same meanings | keyword_merge |
Flexiable visualization of network (alternative to 'keyword_vis') | keyword_network |
Display the table with different groups of keywords | keyword_table |
Visualization of grouped keyword co-occurrence network | keyword_vis |
Making one's own dictionary | make_dict |
English stop words collected in tidytext package | stop_words |